Novel topologies in superconducting junctions

Yuli V. Nazarov Delft University of Technology

Winter school on Quantum Condensed-matter Physics, Chernogolovka RU, December 13-17

Overview of 3 lectures

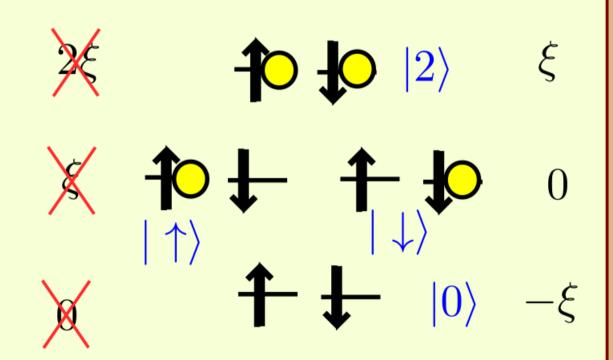
- Lecture #1
 - Basics of superconducting junctions and structures
 - 'Old' topology Majorana
- Lecture #2
 - Weyl topology
 - Basics of semiclassical description: circuit theory
- Lecture #3
 - Semiclassical topology
 - Smiling gaps topology

Lecture #1

- Quantum states in superconductors
- Scattering approach
- Andreev reflection
- Beenakker formula
- Practical matters
- Majorana: idea and status
- Majorana: simple example and consequencies

Quantum states for fermions

• 1 level x 2 spin $\hat{H} = \sum_{levels} \epsilon_l \left(\hat{a}^{\dagger}_{\uparrow} \hat{a}_{\uparrow} + \hat{a}^{\dagger}_{\downarrow} \hat{a}_{\downarrow} \right) - \mu \hat{N}$ directions = 4 states



$$\xi = \epsilon - \mu$$

$$E_g = -\frac{1}{2}\sum E_{ex}$$

Quantum states in superconductors

• Superconducting condensate

$$\hat{H} = \sum_{levels} \epsilon_l \left(\hat{a}^{\dagger}_{\uparrow} \hat{a}_{\uparrow} + \hat{a}^{\dagger}_{\downarrow} \hat{a}_{\downarrow} \right) - \mu \hat{N} + \Delta \hat{a}^{\dagger}_{\uparrow} \hat{a}^{\dagger}_{\downarrow} + \Delta^* \hat{a}_{\downarrow} \hat{a}_{\uparrow}$$

 $|s
angle \; |g
angle$

Mixtures of $\left| 0 \right\rangle \left| 2 \right\rangle$

$$E_g = -\frac{1}{2}\sum E_{ex}$$

BdG Hamiltonian

- Bogoluybov transform cr/ann operators for the excitations
- It doubles the basis!

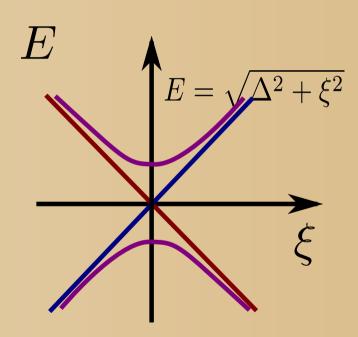
$$\mathcal{H}_{\mathrm{BdG}} \equiv \begin{bmatrix} \hat{H} & \hat{\Delta} \\ \hat{\Delta}^{\dagger} & -\hat{H}^T \end{bmatrix}$$

$$\hat{\Delta} \to i\sigma_y \hat{\Delta}$$
$$\bar{\mathcal{H}}_{\rm BdG} = \begin{bmatrix} \hat{H} & -i\hat{\Delta} \\ i\hat{\Delta}^{\dagger} & \hat{\bar{H}} \end{bmatrix}$$

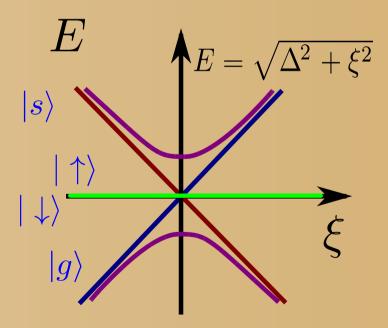
- Mirror symmetry of eigenvalues
- Only positive ones matter

The most confusing slide :)

• BdG spectrum



• Energies of the states

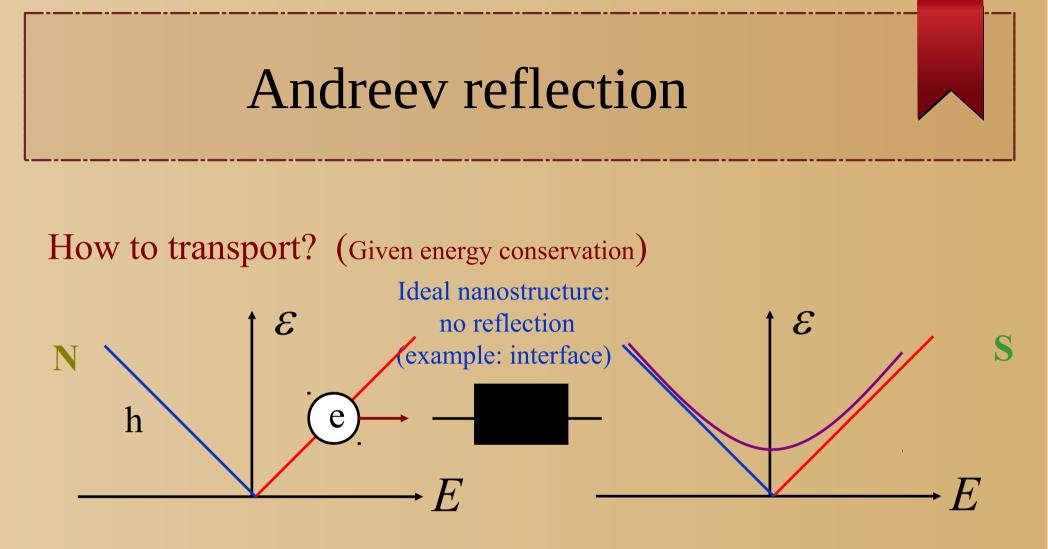


Gap in the bulk

- Old news?
- Strictly no excitations
- Enables quantum states in nanostructures

E

- Superconducting qubits
- Andreev bound states



 $\mathcal{E} < \Delta$: No states in superconductor. And reev reflection $\mathcal{E} > \Delta$: Electron => quasiparticle, still partially And reev reflected.

Andreev reflection

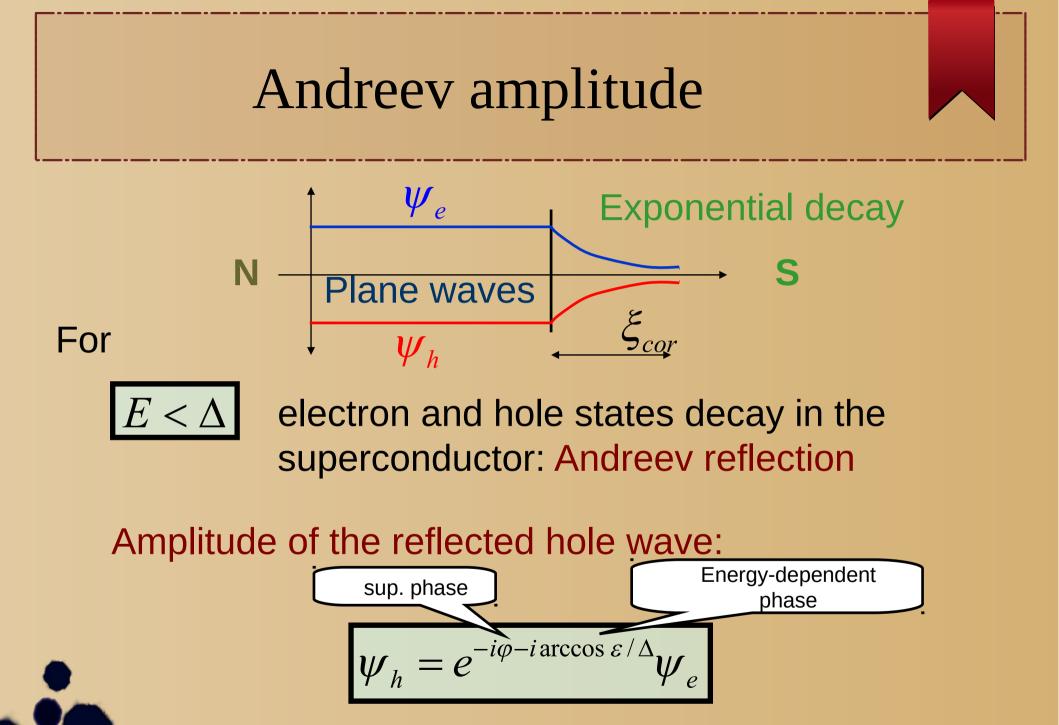
Ideal nanostructure $\varepsilon < \Delta$ An electron is reflected back as a hole (the only possibility)

Let us check conservation laws:

Energy: conserved

Charge: conserved! Since charge 2e goes into the superconductor as a Cooper pair. (twee halen, een Molmentum: (almost) conserved! (while velocity flips)

Spin: conserved.



Remarkable universality: does not depend on the scattered wave

Scattering approach

Nanostructure: can be very complex

Can be modelled as:

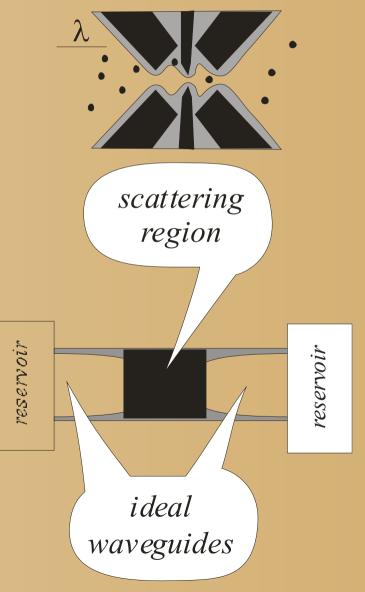
waveguide with transport channels
+ potential barrier

Essence: scattering matrix

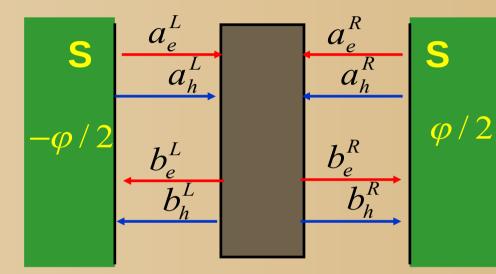
Incoming amplitudes \vec{a} Outgoing amplitudes \vec{b}

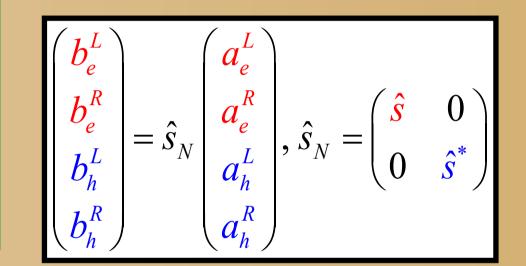
 $\vec{b} = \hat{s}\vec{a}$

$$\begin{bmatrix} \vec{b}_L \\ \vec{b}_R \end{bmatrix} = \begin{bmatrix} \hat{r} & \hat{t} \\ \hat{t} & \hat{r} \end{bmatrix} \begin{bmatrix} \vec{a}_L \\ \vec{a}_R \end{bmatrix}$$

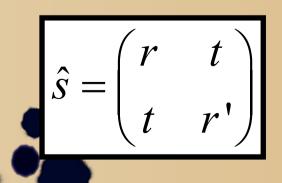


How and why to combine normal scattering and Andreev reflection





Scattering at the (short) nanostructure



 $e^{i heta_{eh}^L}$

Beenakker formula
Therefore:
$$\vec{\psi}_{out} = \hat{s}_N \vec{\psi}_{in} = \hat{s}_N \hat{s}_A \vec{\psi}_{out}$$

det $(\hat{s}_N \hat{s}_A - 1) = 0$ Satistfied at certain θ = energy

$$\det\left(e^{i2\chi}-\hat{S}(\vec{\varphi},E)\right)=0 \qquad \hat{S}\left(\vec{\varphi},E\right)=e^{i\hat{\varphi}}\hat{s}_{\rm h}(E)e^{-i\hat{\varphi}}\hat{s}_{\rm e}(E)$$

$$s_{\rm h}(E) = -\hat{g}\hat{s}_{\rm e}^*(-E)\hat{g}$$

Energy dependence of scattering matrix

- At the scale of inverse dwell time
- Compared with Δ
- Short structure can be disregarded
- Most of these lectures

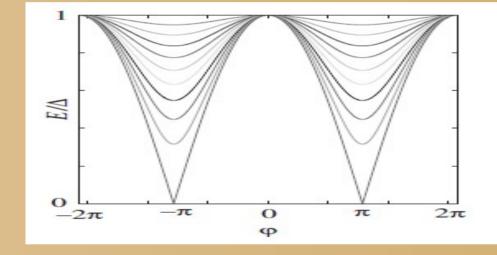
Two-terminal (short) junction

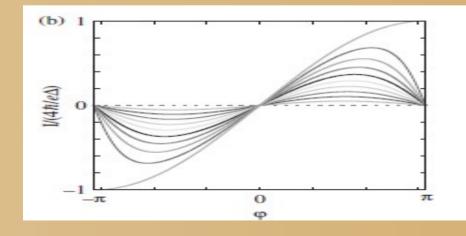
Many channels: bound state for each channel

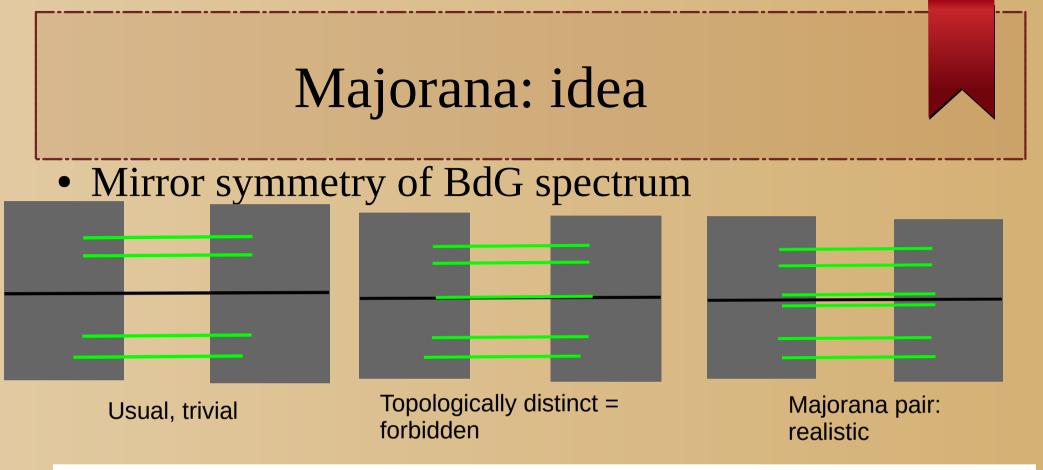
$$E_p = \Delta \sqrt{1 - T_p \sin^2(\varphi/2)}$$

Phase-dependent part of ground state energy

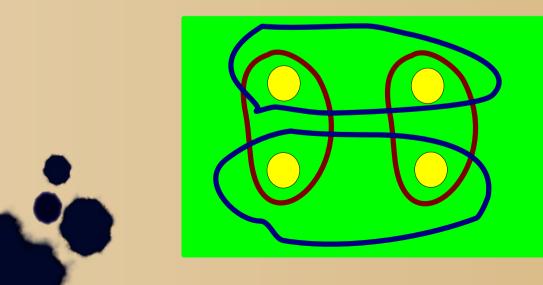
$$E = -\sum_{p} E_{p} = -\Delta \sum_{p} \sqrt{1 - T_{p} \sin^{2} \left(\varphi / 2 \right)}$$







Majorana – localized entity – a placeholder. One quasiparticle – requires 2 placeholders



Highly degenerate state.

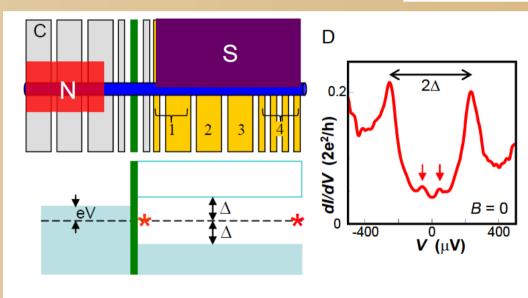
Interesting exchange statistics =>

manipulation

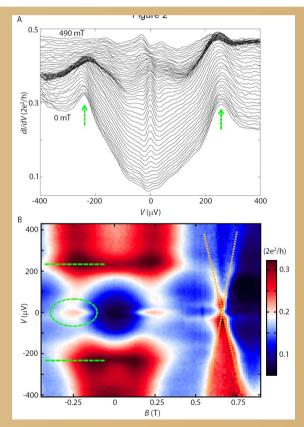
Majorana: status: semiconducting nanowires

Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices

V. Mourik^{1†}, K. Zuo^{1†}, S.M. Frolov¹, S.R. Plissard², E.P.A.M. Bakkers^{1,2}, L.P. Kouwenhoven^{1*}



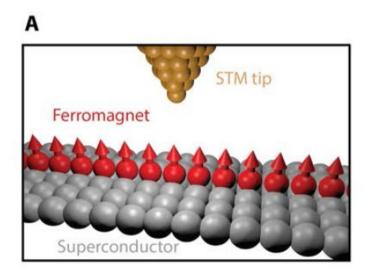
Long, strong spin-orbit, zeeman splitting

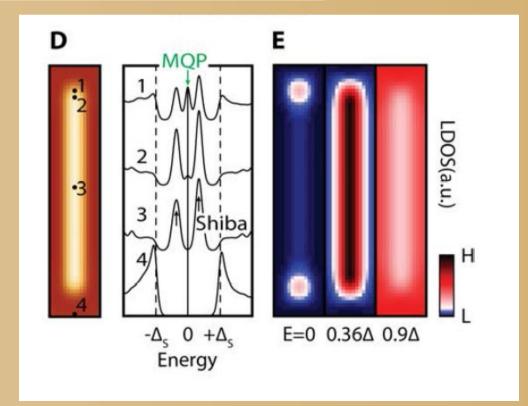


Majorana: status: magnetic chains

Observation of Majorana Fermions in Ferromagnetic Atomic Chains on a Superconductor

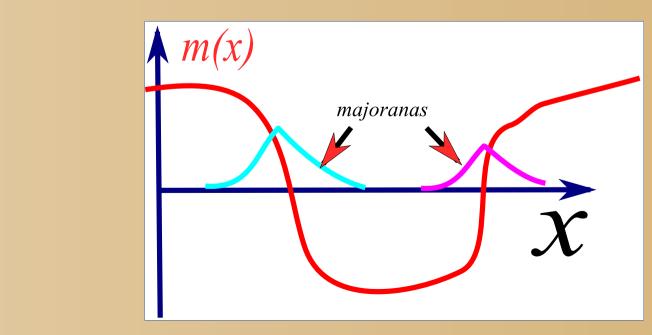
Stevan Nadj-Perge^{*1}, Ilya K. Drozdov^{*1}, Jian Li^{*1}, Hua Chen^{*2}, Sangjun Jeon¹, Jungpil Seo¹, Allan H. MacDonald², B. Andrei Bernevig¹ and Ali Yazdani^{1†}





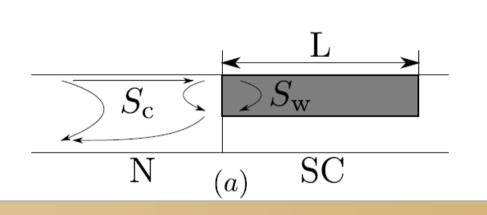
Majorana: simple example

- Minimum Hamiltonian: $\hat{H} = i\partial_x v\sigma_z + a(x)\sigma_y$
- Long-wave approximation near transition point
- Zero-energy: polarizations $\sigma_x = \pm 1$
- Localized states: at zeros of a(x)



Majorana: scattering approach

• Combining normal scattering and majorana wire



Poles in energy dependence of the scattering matrix at small energy

