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* Weyl points everywhere

* Berry curvature

e Multi-terminal superconducting junctions

* Weyl points in superconducting junctions

e Transconductance quantization

e Spin-orbit

» Semiclassical structures and Green functions

e Conservation laws in quantum mechanics

e Quantum circuit theory

e Quantum circuit theory for superconducting junctions

e Several simple examples
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e L&L: levels do not cross along a line
in a parameter space \

e Looks they can: one condition must be .
satisfied: E 1 (p) - E 2 (p)

h.  hy+ihy,
he —ihy,  —h,

» The crossing requires 3 conditions
h, =hy = h, =0

* Proof they do not: suppose they do at i
p=0 and look at 2x2 Hamiltonian = const +

to fulfill:
e Impossible!
e Lazy Landau! Same reasoning: levels do cross in a
3d parameter space. In the vicinity of the Weyl point

T __ Ohg
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Weyl points in the particle spectrum
and the bandstructure

e Conical point in the * Weyl semimetal
spectrum. Massless . 2015 TaAsS

relativistic fermions.
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Berry phase

» Adiabatic (no transitions) evolution of quantum state
in the parameter space |u, (1) = em® ¢ i b #=®E) 1, R (1))

e Berrv phase f R(t)
Y P Y (t) = z/ dt' (n(R(t))| = [n(R(¥))) = ifﬂm dR (n(R)|Vg|n(R))

. A, = <n\8a|n>’

e Berry connection:

* Berry curvature: B, B = 85./4& I 5’aA5

* Gauge-invariant quantity

.




Berry curvature

e Bandstructure: Eigenenergies » Electrostatic analogy
 From eigenstates: Berry curvature ° eld
field WEWQ t —uleharge

. 2D topological Chern number — el. flux

invariant(Chern
number)

BZ(Cj):i<aqw‘aqy> <aqy’8qm>)

® C =5 [dqg,dq,B.()
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Multi-terminal superconducting devices

« Josephson junction _
* More transparent — Andreev bound s@fjtes,_

* More terminalg <gmore erconducting phases
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Weyl points in superconducting
junctions

e Spectrum
a b 1 e e
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Weyl points in superconducting
junctions

e Specifics: crossing at zero energy

e Affects The Berry curvature of the many-body state

) aﬁ—_QZkB(k)

 Come in group of four 2
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Berry curvature and transport

e Currents — functions of the phases
« Change the phases adiabatically
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Leading order First correction
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Apply (incommensurate) voltages to leads 1,2

Keep the 3d lead at

Phases are swept over BZ. Sup.cuyrent vanishes

[ ]
[ ]
[ ]
* First correction remains 3
[ ]
[ ]

Quantum Hall effect

I = G2V Is = —G12Vj

Gio = (262/7TE)C
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* This was without spin-orbit interaction :)
 Since there is no time reversibility,

H=1I17-6¢6+37-B

» Spin-split cone or flat spinful states

Spin-orbit I
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e Weyl singularity departs(?) from zero g excited singlet
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Sem1c1a551ca1 structures and Green
functions

e Bigger than wavelength
e Big number of channels — big conductance

* Design — diffusive parts, tunnel junctions,

e Traditional semiclassical approach:

— 2x2 (Nambu) matrix semiclassical Green function

G(R, €) G? =1

.




Conserving currents in quantum
mechanics

Obeys Schr. equation

2

Ey = Hy = (—2—v2 +U(F)WWr)

Let’s try this
expression

— - _Zh—’ * = = *
V- jr)=——V-(y Vy —yVy )=
2m

—WVWy -Vy —-Vy -Vy )= 0
2m

_ih *—’2 —’2 %
+— W Vy —yVy )=

2m

%(W‘(E U)W —w(E—-U@)y’) =0




More conserving currents in
quantum mechanics

mixture of red V= Red and blue satisfy the same

and blue

Wave function: {W} Time-reversable H:

Magic current: 2x2 matrix

V- J.,s(7)=01" " Conserves if H is time-reversable
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Quantum “currents” and “voltages’

Current: matrix Which matrix?
“Voltage”: matrix Depends on a problem

ty of
the
reserv
o

Full counting
statistics

o
/S —g

Superconductivit
y

Spin injection




Matrix current in a L.andauer
conductor

Matrix “voltage”
on the left(right)
end




Template of a quantum circuit theory

Connectors | —

Assumptionrn :

node = reservoir

requires :

conductance = G HOW 1{0) f|nd
Gg,G, —fixed G, G, 17
1=1G,,G) for each node Z =0
-0 Iven connectors

@
°® ...
h unknown




(A) Quantum circuit theory for
superconducting junctions

* Imaginary energy
G —areal 3d vector on a hemisphere

— Normal metal — North pole

— Sup. Terminal at zero energy
— at the equator

— G —in nodes

— Connectors — rubber threads.

- Leakage-terminals

— Their “elastic energy”

@
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Conductor types

— angle between G’s

e General S =35> ,In(1-T,sin’*(a/2))
» Diffusive S = &2

3
e Tunnel S = GQT sin? 5
e Ballistic & = —Gplncos 3

.
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