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Lecture #2

● Weyl points everywhere
● Berry curvature
● Multi-terminal superconducting junctions
● Weyl points in superconducting junctions
● Transconductance quantization
● Spin-orbit
● Semiclassical structures and Green functions
● Conservation laws in quantum mechanics
● Quantum circuit theory 
● Quantum circuit theory for superconducting junctions
● Several simple examples
●



  

Weyl points everywhere

● L&L: levels do not cross along a line 
in a parameter space

●

● Looks they can: one condition  must be 
satisfied:  

●  Proof they do not: suppose they do at 
p=0 and look at 2x2 Hamiltonian

● The crossing requires 3 conditions 
to fulfill: 

● Impossible!
● Lazy Landau! Same reasoning: levels do cross in a 

3d parameter space. In the vicinity of the Weyl point 



  

Weyl points in the particle spectrum 
and the bandstructure

● Conical point in the 
spectrum. Massless 
relativistic fermions.

● Weyl semimetal
● 2015 TaAs



  

Berry phase

● Adiabatic (no transitions) evolution of quantum state 
in the parameter space

● Berry phase
●

● Berry connection: 
● Berry curvature:
● Gauge-invariant quantity    



  

Berry curvature

● Bandstructure: Eigenenergies 
E(q

x
,q
y
,q
z
)

● From eigenstates: Berry curvature 
field

●

● 2D topological 
invariant(Chern 
number)

●  

● Electrostatic analogy
●  
● B.c. – el.field
● Weyl point –unit charge
● Chern number – el. flux
●  



  

Multi-terminal superconducting devices

● Josephson junction 
● More transparent – Andreev bound states
●

●

● More terminals – more superconducting phases 
● same Andreev states  



  

Weyl points in superconducting 
junctions

● Spectrum



  

Weyl points in superconducting 
junctions

● Specifics: crossing at zero energy
● Affects The Berry curvature of the many-body state
●

● Come in group of four



  

Berry curvature and transport

● Currents – functions of the phases
● Change the phases adiabatically 
●

●

●

●

● Sensitive to the local Berry curvature

First correction
Leading order



  

Transconductance quantization

● Apply (incommensurate) voltages to leads 1,2
● Keep the 3d lead at 
● Phases are swept over BZ. Sup.current vanishes
● First correction remains
●

●

● Quantum Hall effect



  

Spin-orbit
● This was without spin-orbit interaction :)
● Since there is no time reversibility,

● Spin-split cone or flat spinful states
● Weyl singularity departs(?) from zero 

energy 



  

Semiclassical structures and Green 
functions

● Bigger than wavelength
● Big number of channels – big conductance
● Design – diffusive parts, tunnel junctions, 
● Traditional semiclassical approach: 

– 2x2 (Nambu) matrix semiclassical Green function 

●



  

Conserving currents in quantum 
mechanics
2
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More conserving currents in 
quantum mechanics

Wave function: 
mixture of red 

and blue

Time-reversable H:
Red and blue satisfy the same 

equation
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Quantum “currents” and “voltages”

Current: matrix
“Voltage”: matrix

2ˆ ˆ ˆ ˆ; 0, 1G TrG G= = Eigenvalues: 
1

Which matrix?
Depends on a problem
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Matrix current in a Landauer 
conductor
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Template of a quantum circuit theory


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(A) Quantum circuit theory for 
superconducting junctions

● Imaginary energy
● G – a real 3d vector on a hemisphere

– Normal metal – North pole

– Sup. Terminal at zero energy

 – at the equator 

– G – in nodes

– Connectors – rubber threads.

– Leakage terminals 

– Their “elastic energy” 



  

Conductor types

● General
● Diffusive
● Tunnel
● Ballistic 

α – angle between G’s
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